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Abstract—1-Trimethylsilyl-3-phenylcyclopropene undergoes a highly stereocontrolled ene-reaction to give a dimer and further reac-
tion leads to one or more trimers derived through two ene-reactions.
� 2006 Elsevier Ltd. All rights reserved.
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There has been considerable recent interest in biologi-
cally active compounds containing an array of contigu-
ous cyclopropanes.1 The synthesis of such molecules in a
stereocontrolled manner has generally been achieved by
stepwise introduction of each ring.2 The ene-dimerisa-
tion of cyclopropenes leads initially to a cyclopropyl-
cyclopropene. Formally this reaction could be repeated
with further molecules of cyclopropene leading to the
formation of a single polycyclopropane. In practice, to
achieve such a series of reactions would require an extre-
mely high degree of stereo- (exo- or endo-transition
state) and regio-control in each step and in addition
would require the rate of reaction of the dimer 1
(Scheme 1) with cyclopropene (only one possible regio-
and stereochemistry is shown) to be considerably faster
than the dimerisation of this species itself. The known
examples of such reactions for substituted cycloprop-
enes suggest that, although the regiochemistry in dimer-
isations can be largely controlled by appropriate
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introduction of substituents, the stereochemistry (and
particularly the absolute stereochemistry) is more diffi-
cult to control.3–10

1,3-Diphenylcyclopropene is known to undergo a rapid
ene-reaction to give a single dimer, though the stereo-
chemistry of the process is not clear.11 In the case of
1-chloro-3-trimethylsilylcyclopropene 2, a single dimer
3 is formed apparently, though not explicitly stated, by
the reaction of two enantiomeric molecules through an
exo-transition state, rather than two identical molecules,
which would require an endo-transition state and lead to
412a (Scheme 2). However, during the course of this
work, 1-phenylcyclopropene was reported to undergo
ene-dimerisation and trimerisation, in each case through
an endo-transition state.12b
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Scheme 2.
We have recently reported the preparation and studies
of the chemistry of 3-phenylcyclopropene,13 and some
of its derivatives including 1-trimethylsilyl-3-phenyl-
cyclopropene 6. We now report the ene-dimerisation
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and trimerisation of 6. The tribromide 5 was treated
with 2.2 mol equiv of MeLi at �80 �C, allowed to reach
room temperature for 30 min to form the 1-lithio-3-phe-
nylcyclopropene by lithium–halogen exchange,14 and
then quenched with trimethylsilyl chloride to give cyclo-
propene 615 that could be trapped in 30% yield (from 5)
as 7 by reaction with diphenylisobenzofuran (DPIBF).16

This reaction also produced a single dimer 8 of the
cyclopropene; this could be isolated in 40% yield in the
absence of the trap (Scheme 3).17 The regio- and stereo-
chemistry of 8 is established later (only one enantiomeric
series is shown).
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In order to better understand this process, a route to the
cyclopropene 6 was required which could be carried out
at low temperature to minimize dimer formation. Reac-
tion of 918 with methyllithium was expected to lead to a
1,2-silyl shift in an intermediate cyclopropylidene to give
cyclopropene 6.19 However, when the reaction was
carried out at �90 �C and quenched with water at �50
�C, an essentially quantitative yield of allene 10 (Scheme
4) was obtained. At room temperature, the major prod-
uct was the acetylene 11, together with allene 10 and a
small amount of the dimer 8.
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Figure 1. X-ray crystal structure of CPD cycloadduct 18.
In contrast, the trans-isomer 14 reacted with methyl-
lithium at �90 �C followed by quenching with water at
�60 �C to give the cyclopropene 6 as the major product
(Scheme 5), together with ca. 4% of the allene 10. The
cyclopropene 6 was again unstable but could be detected
directly by NMR at �40 �C.20 The cyclopropene could
be trapped as a single (4+2)-cycloadduct 15 with cyclo-
pentadiene (CPD) in 92% yield based on 6. The forma-
tion of 6 presumably occurs through intermediates 12
and 13 by a lithium–bromine exchange followed by a
formal loss of lithium bromide to give a cyclopropylid-
ene which rearranges by a 1,2-trimethylsilyl shift. The
different outcomes from the cis- and trans-isomers may
simply reflect a steric effect slowing the migration of
the trimethylsilyl group in the cis-case and allowing
the normal cyclopropylidene–allene rearrangement21 to
compete; clearly, however, the intermediate cannot be
a symmetrical free carbene or both isomers would give
the same product. Moreover, a more subtle effect based
on the stereochemistry of the lithium–bromine exchange
or on the formation of a more complex intermediate is
also possible.
If the cyclopropene was worked up at 20 �C in the absence
of a trap, the dimer 8 was again obtained, in this case
accompanied by two trimers, 16 and 1722 (Scheme 6).
The dimer was efficiently trapped by reaction with cyclo-
pentadiene to give a crystalline adduct 18.22 Under these
conditions neither of the trimers reacted with the diene.
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The structure of the adduct 18 (Fig. 1) shows that the di-
mer 8 was formed from two identical molecules of 6,
rather than two enantiomeric molecules, and that the
reaction occurs through an endo-transition state
(Scheme 7). The formation of one isomer of 8 from 6
creates eight chiral centres in 18 from the single chiral
centre in 6.
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Scheme 7.
To exploit this, the corresponding trimethylsilylcyclo-
propene was obtained from the optically active acid 19
as shown below (Scheme 8). Surprisingly, the dimer
was isolated in only low yield; trimers 16 and 17 were
identified by NMR in a complex mixture with other
products. The reason for the difference between the reac-
tions of the racemic and optically active cyclopropenes is
the subject of further analysis; however, the isolation of
the two trimers from optically active monomer indicates
that they are made up of three identical monomer mole-
cules and not of enantiomeric molecules. Trapping of
(+)-8 with cyclopentadiene gave a 64% yield of the
adduct (+)-18 of the corresponding enantiomerically
enriched cyclopropene.
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The regiochemistry of the major trimer 16 was assigned
based on an endo-transition state as in the ene-dimerisa-
tion, on the basis of the above requirement that the same
enantiomer of the cyclopropene must add to the dimer
(Scheme 9).

It is consistent with the stereochemistry recently
reported for the ene-trimer of 1-phenylcyclopropene.12b

On the other hand, the structure of the minor isomer
appears to require an exo-transition state (Scheme 10).
The alternative endo-transition state would lead to a
product in which the phenyl and trimethylsilyl groups
on the centre ring were reversed, that is, that involved
C–C bond formation to the phenyl-substituted carbon
in the cyclopropene of the dimer. These two structures
could be distinguished on the basis of the position of
the CHPh group in the proton NMR spectrum (d 1.8),
the corresponding signal for a CHSiMe3 group appear-
ing at about d 0.5 in other cases.
The trans-isomer 14 reacted with 2.15 mol equiv of
methyllithium at �90 �C followed by quenching with
methyl iodide, trimethylsilyl chloride or carbon dioxide
which led to a lithium–hydrogen exchange in the inter-
mediate cyclopropene 6 to produce 20 which was
trapped by electrophiles to give the corresponding 1,2-
disubstituted 3-phenylcyclopropenes 21–24 mostly in
good yields (Scheme 11).
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Attempts to trap the intermediate 20 with deuterated
water, however, did not produce the deuterated cyclopro-
pene 21. Instead, the dimer 2523 and trimer 2624 (Scheme
12) were observed. Even under the same conditions under
which 6 had been observed directly by 1H NMR, no 21
could be observed, suggesting that the ene-dimerisation
of the 2-D compound proceeds somewhat faster than that
of the 2-H compound. This might result from a secondary
isotope effect in the dimerisation which converts two
pseudo-sp C–H(D) bonds into cyclopropane C–H(D)
bonds. Ab initio calculations have been preformed at
the B3LYP/6-31G* level of theory for a model ene-
dimerisation of 1,2-dideuteriocyclopropene by both the
exo- and endo-transition states.25 In both cases, the deu-
terium isotope effect for the dimerisation reaction, kH/kD,
was calculated at 0.86,26 in line with the effect expected
for a normal inverse secondary isotope effect. Further
calculations are being carried out to see if this difference
is amplified in more substituted systems. This possible
explanation, and the observation that only one trimer
was observed from 21, whereas two were formed in a
3:1 ratio from 6 are currently being investigated.
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